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confirm the effectiveness of the proposed approach, which may be
successfully employed early in the design process.
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Limit Cycles and Domain of Stability
in Unsteady Aeroelastic System
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Introduction

A EROELASTIC systems exhibit a variety of phenomena includ-
ing instability, limit-cycle oscillation (LCO), and even chaotic

vibration.1 An excellent survey paper by Mukhopadhyay2 provides
a historical perspective on analysis and control of aeroelastic sys-
tems. Studies related to prediction of flutter instability theory have
been done.1,3−8 In this Note, the existence of LCO and the domain
of stability (attraction) in prototypical aeroelastic wing sections are
examined. Unlike Ref. 8, the aeroelastic model considered here in-
cludes the unsteady aerodynamics based on Theodorsen’s theory.9

The model includes a structural nonlinearity of fifth degree in the
pitch degree of freedom. The chosen dynamic model describes the
nonlinear plunge and pitch motion of a wing.4,5 The dual-input de-
scribing functions (DIDFs)10 of the nonlinearity for asymmetric
oscillations are used for the prediction of unstable and stable limit
cycles. For the case when the origin is stable, the quadratic Lyapunov
method (see Ref. 11) is used to compute the domain of attraction.
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Analytical expressions for the computation of biases, amplitudes,
and frequencies of oscillation of the pitch and plunge responses are
obtained. The orbital stability of the LCO using the Nyquist cri-
terion is established, and it is shown that both unstable as well as
stable limit cycles exist when the origin is exponentially stable.

Aeroelastic Model
The prototypical aeroelastic wing section is shown in Fig. 1. The

governing equations of motion of the aeroelastic system are given
by4,5

[
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ḧ

α̈

]
+

[
ch 0

0 cα

][
ḣ
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where α is the pitch angle, b is the semichord of the wing, h is
the plunge displacement, mw and mt are the mass of the wing
and the total mass, Iα is the moment of inertia, and xα is the
nondimensionalized distance of the center of mass from the elas-
tic axis. The lift L(t) and moment M(t) represent the unsteady
aerodynamics, which are functions of position, velocity, accelera-
tion, and time prehistory of the vortex wave. The lift and moment
are acting at the elastic axis of the wing. Here cα and ch are the
pitch and plunge damping coefficients, kh0 is the plunge spring con-
stant, and kα(α) is the nonlinear function associated with the pitch
spring. For purposes of illustration, the function αkα(α) is consid-
ered as a polynomial nonlinearity of fifth degree. This is given by
αkα(α) = α(kα0 + kα1α + kα2α

2 + kα3α
3 + kα4α

4).
Theodorsen9 derived the expressions for lift and moment, assum-

ing harmonic motion of the airfoil, of the form5
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where sp is the span and a is nondimensionalized distance from
the midchord to the elastic axis and U is freestream velocity. Jones

Fig. 1 Aeroelastic model.
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Fig. 2 Feedback system.

developed an approximation to Theodorsen’s function C(k) for sim-
plicity in computation, which can be written as (see Ref. 5)

C(s) = 0.5 + a1s + a0

s2 + b1s + b0
(3)

where s is the Laplace variable and a1 = 0.1080075(U/b),
a0 = 0.006825U 2b−2, b1 = 0.3455(U/b), and b0 = 0.01365U 2b−2.

It will be convenient to obtain a state variable form of the complete
model. Theodorsen’s function C(s) can be treated as a second-order
transfer function of a filter and can be realized as

ẋ f 1 = x f 2

ẋ f 2 = −b0x f 1 − b1x f 2[Uα + ḣ + b(0.5 − a)α̇] (4)

Define the state vector including the filter states as x =
(h, α, ḣ, α̇, x f 1, x f 2)

T ∈ R6. The complete system including Eqs. (1)
and (4) has a state variable representation of the form

.= Ax − Bknα
(α) (5)

where A and B are appropriate matrices and

knα(α) = α
(
kα1α + kα2α

2 + kα3α
3 + kα4α

4
)

(6)

Define u = − n(e), with e = y = α = Cax, where one has n(e) =
e(kα1 e + kα2 e2 + kα3 e3 + kα4 e4) and Ca = [0, 1, 0, 0, 0, 0]. Then the
system (5) can be represented as a negative feedback system as
shown in Fig. 2. The transfer function G(s) relating the output y
and u can be written as

ŷ(s)/û(s) = Ca(s I6 × 6 − A)−1 B = G(s) = n1(s)/d1(s) (7)

where ˆ denotes the Laplace transform of signals.

Describing Function and LCO
In this section, the describing function method is used for the pre-

diction of limit cycles. For the limit-cycle analysis, first the quasi-
linear approximation of the nonlinear operator by harmonic balanc-
ing must be obtained. For the aeroelastic model, numerical results
show that the steady-state oscillations are periodic, but a nonzero
average exists.

In the aeroelastic system, let us assume that there exists an LCO
and that the pitch angle y = α and the plunge displacement are
sinusoidal functions that have nonzero average. Let the input signal,
e = y = α, to the nonlinear block and the plunge displacement in the
steady-state be of the form

e(t) = Bα + Aα sin(ωt), h(t) = Bh + Ah sin(ωt + θ) (8)

where Bk , Ak , and ω are the bias, amplitude, and frequency of LCO,
respectively, k ∈ {α, h}. Here θ is the phase shift in the plunge re-
sponse with respect to the pitch response.

Because e is the sum of the two signals (a constant and a sinusoidal
function), one needs to obtain the DIDF. The output n(e) of the
nonlinear operator is a periodic signal and is given by

n(e) =
4∑

j = 1

kα j [Bα + Aα sin(ωt)] j + 1 (9)

The periodic signal n(e) has its fundamental frequency ω and can
be represented as a Fourier series that contains higher harmonics.
In the following approximate analysis, for simplicity a quasi-linear
approximation of the nonlinear element is obtained by retaining
only the fundamental and constant terms of its output and higher
harmonics are ignored. Thus, the output of the nonlinear block is
approximated as

na(e) = N0(Bα, Aα) + Aα N (Bα, Aα) sin(ωt) (10)

The Fourier coefficients N0 and N , which are nonlinear functions of
the bias and amplitude, have been derived in Ref. 8. (These are given
in the Appendix.) The DIDFs associated with the constant and the
sinusoidal inputs are N0 B−1

α and N , respectively. The steady-state
output of the linear block due to the approximate input u = −na is

y(t) = −G( j0)N0(Bα, Aα) − |G( jω)|Aα N (Bα, Aα) sin[ωt

+ � G( jω)] = −G( j0)N0(Bα, Aα) − Aα N (Bα, Aα)

× [Gr (ω) sin(ωt) + Gi (ω) cos(ωt)] (11)

where G( jω) = Gr (ω) + jGi (ω), that is, Gr is the real part and Gi

is the imaginary part of the transfer function G.
Because the output of the linear block is the input to the nonlinear

block (e = y), it follows from Eqs. (8) and (11) that

G( j0)N0(Bα, Aα) = −Bα (12)

N (Bα, Aα)Gr (ω) = −1 (13)

N (Bα, Aα)Gi (ω) = 0 (14)

If the LCO exists, then Eqs. (12–14) are necessarily satisfied. Solv-
ing these equations gives the bias term and the amplitude and fre-
quency of oscillation. An equivalent representation of Eqs. (13) and
(14) takes a form of complex equation given by

1 + N (Bα, Aα)[Gr ( jω) + jGi ( jω)] = 1 + N (Bα, Aα)G( jω) = 0

(15)

Equation (15) has a geometric interpretation. Indeed, the values of
Bα and Aα corresponding to the point of intersection of the Nyquist
diagram of G(s) and the plot of [−1/N−1(Bα, Aα)] are the solutions
of Eqs. (13) and (14).

Now that Bα , Aα , and ω have been obtained, one can proceed to
solve the oscillation parameters for the plunge degree of freedom.
Defining the output matrix Cp = [1, 01 × 5], one has h = Cpx, and
the transfer function relating h to u is

G p(s) = Cp(s I6 × 6 − A)−1 B = ĥ(s)/û(s) (16)

For computing the bias and fundamental component of the periodic
function h, it is necessary to substitute

u = −na(e) = −N0(Bα, Aα) − Aα N (Bα, Aα) sin(ωt) (17)

in Eq. (16). Then it easily follows that, in the steady state, the plunge
displacement is given by

h(t) = −G p(0)N0(Bα, Aα)

− Aα N (Bα, Aα)|G p( jω)| sin[ωt + � G p( jω)] (18)
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In view if Eqs. (8) and (18), comparing similar terms gives

Bh = −G p(0)N0(Bα, Aα)

Ah cos(θ) = −Aα N (Bα, Aα)G pr ( jω)

Ah sin(θ) = −Aα N (Bα, Aα)G pi ( jω) (19)

where G p( jω) = G pr ( jω) + jG pi ( jω). Equation (19) is solved to
obtain Ah and θ .

Domain of Stability
Interestingly, there exists flutter even though the equilibrium point

x = 0 is exponentially stable.7 In such cases, it is of interest to de-
termine the domain of stability surrounding the origin. Suppose that
for a given flow velocity, the matrix A is Hurwitz. Then for any given
positive definite symmetric matrix Q (denoted as Q > 0), there ex-
ists a unique solution of the Lyapunov equation (see Ref. 11)

AT P + P A = −Q (20)

and the matrix P > 0. For analyzing stability of the nonlinear system
Eq. (5), consider a quadratic Lyapunov function

V (x) = xT Px (21)

Taking the derivative of V (x) along the solution of Eq. (5) gives

V̇ (x) = xT [AT P + P A]x − 2xT P Bknα(α)

≤ −xT Qx + 2‖x‖‖P B‖|knα(α)| (22)

where ‖ · ‖ denotes the Euclidean norm. The nonlinear function can
be bounded as

|knα(α)| = |α‖(kα1α + kα2α
2 + kα3α

3 + kα4α
4
)| ≤ ‖x‖µ(α) (23)

where µ(α)
.= |(kα1α + kα2α

2 + kα3α
3 + kα4α

4)|.
For any n × n matrix M > 0, one has λmin(M)‖x‖2 ≤ xT Mx ≤

λmax(M)‖x‖2, where λmin (max) denotes minimum (maximum)
eigenvalue of M . Using Eq. (23) in Eq. (22) gives

V̇ (x) ≤ −‖x‖2[λmin(Q) − 2‖P B‖µ(α)] (24)

For the nonlinear function µ(α), one can find an interval
[−α∗, α∗] ∈ R centered at zero such that

µ(α) ≤ λmin(Q)/(2‖P B‖) .= r∗ (25)

For α ∈ [−α∗, α∗], consider an ellipsoid E defined as E(γ ) =
{x ∈ R6 : x T Px = γ }, where γ > 0. Define a region surrounding
the origin as � = {x ∈ R6 : |α| ≤ α∗}.

We are interested in obtaining the largest ellipsoid contained in �.
This can be obtained by minimizing xT Px subject to the constraint
α = |α∗|. The optimal solution is obtained by minimizing

J = xT Px − λ
(
x2 − α∗) (26)

Table 1 Predicted and actual (simulated) values of amplitude and bias for pitch and plunge oscillations for a = −−0.4.

U , m/s

Parameter 15 16 17 18 19 20

Predicted Aα , deg 7.02505 7.36505 7.69165 8.0114 8.3283 8.645
Actual Aα , deg 6.9489 7.2790 7.5964 7.9065 8.2135 8.5203
Predicted Ah , m 0.01415 0.016045 0.018 0.02005 0.0222 0.02445
Actual Ah , m 0.0143 0.0162 0.0182 0.0202 0.0224 0.0247
Predicted Bα , deg −0.16435 −0.17425 −0.18405 −0.1938 −0.2038 −0.2141
Actual Bα , deg −0.1977 −0.2089 −0.2202 −0.2317 −0.2434 −0.2555
Predicted Bh × 10−3, m 0.15 0.155 0.2 0.25 0.30 0.3
Actual Bh × 10−3, m 0.1341 0.1617 0.1923 0.2263 0.2649 0.3082

where λ is the Lagrange multiplier. The necessary conditions for
optimality are

dJ

dx
= 2Px − λe2 = 0,

dJ

dλ
= x2 − α∗ = 0 (27)

where e2 = (0, 1, 01 × 4)
T . Solving Eq. (27) gives the optimal

solution

x∗ = λP−1e2/2 (28)

Because x∗
2 = α∗, according to Eq. (28), one has

λ = 2α∗/pi22 (29)

where pi22 is the element in the second row and second column of
P−1. The optimal value of V is then

V = (Px∗)T Px∗ = λ2eT
2 P−1 P P−1e2/4 = α∗2/pi22

.= γ ∗ (30)

Then it follows that V̇ (x) < 0, for all x ∈ E(γ ) − {0}, where γ < γ ∗.
Because V (x) is a positive definite function, invoking the Lyapunov
theorem (see Ref. 11), one concludes that any trajectory that begins
from x(0) ∈ E(γ ), γ < γ ∗, converges exponentially to the origin
and flutter cannot exist. The region interior of the ellipsoid E(γ ∗) is
an estimate of the domain of stability. The computation of a region
of stability using the result of this section is presented in the next
section.

This section presents numerical results. The model parameters
are given in the Appendix.

Amplitudes and Biases of Limit Cycles: Stable and Unstable Origin
The DIDF method is used for the prediction of limit cycles for

various values of U and a. The ampitudes, biases, and frequen-
cies of oscillation of limit cycles are obtained by solving Eqs. (12–
14) for a set of values of a ∈ {−0.4, −0.6, −0.8} for each value
of U ∈ [12, 20] m/s and are plotted in Fig. 3. The actual values
of the oscillation parameters are also obtained by numerical sim-
ulation of the open-loop system. Table 1 gives the predicted and
actual values of the amplitudes and biases of the limit cycles for
U ∈ [15, 20] m/s and a = − 0.4. It is seen that the amplitudes of os-
cillations, as well as magnitudes of biases, increase monotonically
with velocity, but the bias angle is negative and the plunge bias is
positive. It is seen that the predicted and acutal values are close. Of
course, better approximations can be obtained by including higher
harmonics of signals in the analysis but at the cost of increasing
complexity.

Note that the origin is stable for a = −0.4, but it becomes unstable
for a = −0.8. It is seen that the magnitudes of the plunge amplitude
and bias, as well as the pitch bias, decrease as a gets closer to −1.
It is seen that, for larger velocities, the pitch amplitude is smaller
for a = −0.8 compared to a = −0.4 and −0.6. The amplitudes and
frequencies of oscillations monotonically increase with velocity for
each value of a.

Nyquist Diagram: Limit Cycles and Stability
Nyquist diagrams can be used to determine limit cycles and es-

tablish their stability.
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a) Pitch amplitude, deg

b) Pitch bias, deg

c) Plunge amplitude, m

d) Plunge bias, m

e) Frequency of oscillation, rad/s

Fig. 3 Limit cycles, U = [12, 20] m/s, and ——, a = −−0.4; �, a = −−0.6;
and ∗, a = −−0.8.

a) b)

Fig. 4 Nyquist plots: a) origin stable, U = 19.0625 m/s, and a = −−0.4
and b) origin unstable, U = 19.0625 m/s, and a = −−0.8.

Numerical Results
Stable and Unstable Limit Cycles: Origin Stable

First we examine the orbital stability for U = 19.0625 m/s and
a = −0.4, for which the origin is stable. For this case, A is Hurwitz.
It turns out that in this case, for stability, according to the Nyquist
criterion (see Ref. 11) (−1/N ) point must not be encircled by
the Nyquist diagram because the open-loop system is stable. Fig-
ure 4 shows the Nyquist plot. Notice that for a = −0.4 the Nyquist
diagram has two lobes (L1 and L2) centered along the negative
real axis and intersects the (−1/N ) plot twice, first at a lower
frequency (ωl = 13.8099 rad/s) and then at a higher frequency
(ωh = 16.8369 rad/s). Therefore, there exist two limit cycles. Solv-
ing Eqs. (12) and (13) gives the amplitudes and biases of the limit
cycle, which are 3.4225 and −0.0979 deg for lower frequency and

Fig. 5 Phase plane plot, h(meters)-h(meters per second), U =
19.0625 m/s, and a = −−0.4.

8.2327 and −0.2441 deg for the higher frequency. It turns out that a
stable limit cycle is not possible at the lower frequency (correspond-
ing to the intersection point with the left lobe) because, as the value
of Aα increases from the equilibrium value A∗

α , the (−1/N ) point
enters the left lobe and is encircled twice in clockwise direction,
which implies that the system becomes unstable. Thus, the ampli-
tude of oscillation keeps on increasing until it reaches the value
corresponding to the point of intersection of Nyquist diagram at the
higher frequency with the right lobe. This intersection point gives a
stable limit cycle, which can be explained as follows: Notice that in
this case if Aα exceeds A∗

α the corresponding critical point (−1/N )
lies within the right lobe (L2). Figure 4a shows that the point (−1/N )
is encircled once in the clockwise and then in the counterclockwise
direction, giving a net encirclement zero. Therefore, according to
the Nyquist criterion, the system is stable and the amplitude starts
decreasing until it reaches A∗

α . Of course, if Aα < A∗
α , the point

(−1/N ) lies in the first lobe (L1), where it is unstable as required,
and, therefore, Aα converges to A∗

α .
To verify the existence of the predicted limit cycles, simula-

tion results for U = 19.0625 and a = − 0.4 with the initial con-
dition x(0) = (0, 4.07453 deg, 0, 0, 0, 0)T are obtained and plotted
in Fig. 5. Figure 5 shows both the unstable LCO of smaller amplitude
and the stable LCO of larger amplitude.

Stable Limit Cycle: Origin Unstable
Now we consider the case of unstable origin. The Nyquist diagram

of G(s) for U = 19.0625 m/s and a = −0.8 is shown in Fig. 4b.
For the chosen value of U and a, the matrix A has two unstable
eigenvalues. It is seen from Fig. 4b that the (−1/N ) point is enclosed
twice in the counterclockwise direction by the Nyquist contour if
Aα > A∗

α . Therefore, according to the Nyquist criterion, the limit
cycles is orbitally asymptotically stable.

Domain of Stability: U = 19.0625 Meters per Second and a = −0.4
As shown in this case, limit cycles exist even though the ori-

gin is exponentially stable. However, because the system is ex-
ponentially stable (where A is Hurwitz), there exists a finite do-
main of stability surrounding the origin. Indeed for the choice of
x(0) = [0, 3 deg, 0, 0, 0, 0]T , U = 19.0625 m/s, and a = −0.4, the
trajectory (not shown here) converges to the origin. Of course, it
is of interest to find an estimate of the domain of stability when
the origin is exponentially stable. Here, as an illustration, we com-
pute an estimate of the domain of stability for U = 19.0625 m/s and
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a = −0.4. For the choice of Q = I6 × 6 in the Lyapunov Eq. (20),
solving for P > 0 gives ‖P B‖ = 141.1453 and α∗ = 0.055 rad. Note
that V̇ < 0 if the trajectory is such that α < α∗. When γ ∗ is com-
puted from Eq. (30), it is found to be 0.018. Thus, the ellipsoid
E(γ ), γ < 0.018, gives an estimate of the domain of stability, and
if the perturbed initial state lies in E(γ ), then flutter is not possi-
ble. Using x(0) = [0, α0, 0, 0, 0, 0]T in the level surface equation
E(γ ∗) = γ ∗, one has α0 = 1.0827 deg. Thus, the initial condition
x(0) = [0, 1.08 deg, 0, 0, 0, 0]T lies in the domain of attraction. Of
course, the computed domain of stability is only an estimate.

Conclusions
In this Note, the question of existence of LCO of a prototypical

aeroelastic wing section with structural nonlinearity in the pitch
degree of freedom using the describing function approach has been
considered. In the presence of asymmetric structural nonlinearity,
the model exhibits asymmetric LCOs for certain values of flow
velocities and locations of the elastic axis. When DIDF is used,
limit cycles and associated oscillation parameters are obtained. For
the flow velocities for which the origin is stable, stable and unstable
limit cycles and an estimate of the domain of stability have been
derived. It is seen that the unstable limit cycle has small amplitude
and low frequency. Numerical results have been presented for a set of
values of the flow velocities and the locations of the elastic axis that
show that the predicated average value, amplitude, and frequency
of LCOs are close to the actual values.

Appendix: System Parameters and Describing Function
System Parameters

The system parameters for simulation have been taken from
Refs. 4 and 5:

b = 0.1064 m mw = 1.662 kg ch = 27.43 Ns/m

cα = 0.036 Ns ρ = 1.225 kg/m3 mt = 12.387 kg

Iα = 0.04325 + mwx2
αb2 kg · m2 xα = [0.082 − (b + ab)]/b

sp = 0.6 m

kα = 2.82(1 − 7.8480α + 663.2911α2 + 65.2754α3

− 4.9928 × 103α4) N · m/rad

kh = 2844.4 N/m

Describing Function
The describing function has been obtained elsewhere8 and is given

by

(N0/Bα) = kα1

(
0.5A2

α + B2
α

) + kα2

(
1.5A2

α Bα + B3
α

)

+ kα3

[
3A2

α B2
α + B4

α + 3A4
α(1/8)

]

+ kα4

(
5A2

α B3
α + B5

α + (15/8)A4
α Bα

)

N = 2kα1 Bα + kα2

(
0.75A2

α + 3B2
α

) + kα3

(
3A2

α Bα + 4B3
α

)

+ kα4

[
7.5A2

α B2
α + 5B4

α + (5/8)A4
α

]
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